

Effective from Session: 2020-21									
Course Code	BE201	1 Title of the Course Biochemistry L				Р	С		
Year	II	Semester III 3					4		
Pre-Requisite	None	Co-requisite	None						
Course Objectives			ng of biological macromolecules and their chemical properti to their biological function.	es and	l three				

	Course Outcomes						
CO1	The students will learn about the macromolecules, their properties and functions such as carbohydrates, lipids, proteins, and nucleic acids,						
	and also the functions and structures of vitamins and hormones.						
CO2	The students will learn about the carbohydrate metabolism in both respiration and photosynthesis and understand how the body meets the						
	carbohydrate requirements, and how the carbohydrate metabolism regulates the synthesis of several other biomolecules.						
CO3	The students will understand about the synthesis and degradation of lipids, in the body.						
CO4	The students will understand about the synthesis and degradation of amino acids in the body.						
CO5	The students will understand about the synthesis (through de novo and salvage pathways) and degradation of nucleic acids in the body.						

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO			
1	Role of water in biological processes and structures and functions of biomolecules	Solvent, solute, solutions, water and its properties, hydrogen ion concentration, Buffers system. General structure, function and classification of carbohydrates (mono, di and poly saccharide.), lipids (Fatty acids, Phospholipids, Glycolipids, Waxes), proteins (primary, secondary and tertiary) and nucleic acid (Purines, pyrimidines, nucleosides, nucleotides) Structure and functions of vitamins and hormones.	8	CO1			
2	Carbohydrates metabolism	n phosphate pathway, Oxidative phosphorylation (energy metabolism). Biosynthesis of polysaccharides: Photosynthesis, gluconeogenesis.					
3	Lipid metabolism	Oxidation of fatty acids-saturated and unsaturated, beta, omega oxidations and regulations. Biosynthesis of fatty acids, cholesterol and phospholipids.	8	CO3			
4	Amino acid metabolism	Biosynthesis and oxidation of glutamate, serine and aspartate family amino acids and their regulation. Urea cycle, Nitrogen fixation, (Biological, nif gene)	8	CO4			
5	Nucleic acid metabolism	Biosynthesis of purines & pyrimidines by de novo & salvage pathway and their regulations. Biodegradation of purines and pyrimidines and regulation.	8	CO5			
Referen	ce Books:						
1. Ham	nes and Hooper; Instant	notes on biochemistry; Viba Books PVT. Ltd. New York.					
2. Nels	on, Cox; Lehninger's, P	rinciple Biochemistry; Macmillan Worth Publication.					
3. L. St	tryer; Biochemistry.						
4. Voe	t and Voet; Biochemistr	y; Freeman WH and Co.					
5. Mat	hews et al; Biochemistry	y; Pearson education.					
6. S.C	Rastogi; Biochemistry;	Tata Macgraw Hill.					
e-Lear	ning Source:						

https://drive.google.com/file/d/1xNN5TZncTJ48yOIyoifCZaMn2FzbDw5w/view?usp=sharing

Γ

					Cour	se Arti	culatio	n Matr	ix: (Map	ping of (COs witł	n POs and	d PSOs)				
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
2	1	2	3	1	2		1				3	3	1	1			
2	3	2	3	1	2		1				3	3	1	1			
2	3	2	3	1	2		1				3	3	1	1			
2	3	2	3	1	2		1				3	3	1	1			
2	3	2	3	1	2		1				3	3	1	1			
	2 2 2 2 2 2	2 1 2 3 2 3 2 3	2 1 2 2 3 2 2 3 2 2 3 2 2 3 2	2 1 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3	2 1 2 3 1 2 3 2 3 1 2 3 2 3 1 2 3 2 3 1 2 3 2 3 1 2 3 2 3 1	PO1 PO2 PO3 PO4 PO5 PO6 2 1 2 3 1 2 2 3 2 3 1 2 2 3 2 3 1 2 2 3 2 3 1 2 2 3 2 3 1 2 2 3 2 3 1 2 2 3 2 3 1 2	PO1 PO2 PO3 PO4 PO5 PO6 PO7 2 1 2 3 1 2 2 2 3 2 3 1 2 2 2 3 2 3 1 2 2 2 3 2 3 1 2 2 2 3 2 3 1 2 2 2 3 2 3 1 2 2	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 2 1 2 3 1 2 1 2 3 2 3 1 2 1 2 3 2 3 1 2 1 2 3 2 3 1 2 1 2 3 2 3 1 2 1 2 3 2 3 1 2 1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 2 1 2 3 1 2 1 1 2 3 2 3 1 2 1 1 2 3 2 3 1 2 1 1 2 3 2 3 1 2 1 1 2 3 2 3 1 2 1 1 2 3 2 3 1 2 1 1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 2 1 2 3 1 2 1 <th>PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 2 1 2 3 1 2 1 PO10 PO11 2 3 2 3 1 2 1 <!--</th--><th>PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 2 1 2 3 1 2 1 3 3 2 3 2 3 1 2 1 3 2 3 2 3 1 2 1 3 2 3 2 3 1 2 1 3 2 3 2 3 1 2 1 3 2 3 2 3 1 2 1 3 2 3 2 3 1 2 1 3</th><th>PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 2 1 2 3 1 2 1 3 3 2 3 2 3 1 2 1 3 3 2 3 2 3 1 2 1 3 3 2 3 2 3 1 2 1 3 3 2 3 2 3 1 2 1 3 3 2 3 2 3 1 2 1 3 3 2 3 2 3 1 2 1 3 3</th><th>2 1 2 3 1 2 1 3 3 1 2 3 2 3 1 2 1 3 3 1 2 3 2 3 1 2 1 3 3 1 2 3 2 3 1 2 1 3 3 1 2 3 2 3 1 2 1 3 3 1 2 3 2 3 1 2 1 3 3 1 2 3 2 3 1 2 1 3 3 1 2 3 2 3 1 2 1 3 3 1</th><th>PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 2 1 2 3 1 2 1 3 3 1 1 2 3 2 3 1 2 1 3 3 1 1 2 3 2 3 1 2 1 3 3 1 1 2 3 2 3 1 2 1 3 3 1 1 2 3 2 3 1 2 1 3 3 1 1 2 3 2 3 1 2 1 3 3 1 1</th><th>PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 PS04 2 1 2 3 1 2 1 3 3 1 1 2 3 2 3 1 2 1 3 3 1 1 2 3 2 3 1 2 1 3 3 1 1 2 3 2 3 1 2 1 3 3 1 1 2 3 2 3 1 2 1 3 3 1 1 2 3 2 3 1 2 1 3 3 1 1</th><th>PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 PS04 PS05 2 1 2 3 1 2 1 3 3 1 1</th></th>	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 2 1 2 3 1 2 1 PO10 PO11 2 3 2 3 1 2 1 </th <th>PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 2 1 2 3 1 2 1 3 3 2 3 2 3 1 2 1 3 2 3 2 3 1 2 1 3 2 3 2 3 1 2 1 3 2 3 2 3 1 2 1 3 2 3 2 3 1 2 1 3 2 3 2 3 1 2 1 3</th> <th>PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 2 1 2 3 1 2 1 3 3 2 3 2 3 1 2 1 3 3 2 3 2 3 1 2 1 3 3 2 3 2 3 1 2 1 3 3 2 3 2 3 1 2 1 3 3 2 3 2 3 1 2 1 3 3 2 3 2 3 1 2 1 3 3</th> <th>2 1 2 3 1 2 1 3 3 1 2 3 2 3 1 2 1 3 3 1 2 3 2 3 1 2 1 3 3 1 2 3 2 3 1 2 1 3 3 1 2 3 2 3 1 2 1 3 3 1 2 3 2 3 1 2 1 3 3 1 2 3 2 3 1 2 1 3 3 1 2 3 2 3 1 2 1 3 3 1</th> <th>PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 2 1 2 3 1 2 1 3 3 1 1 2 3 2 3 1 2 1 3 3 1 1 2 3 2 3 1 2 1 3 3 1 1 2 3 2 3 1 2 1 3 3 1 1 2 3 2 3 1 2 1 3 3 1 1 2 3 2 3 1 2 1 3 3 1 1</th> <th>PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 PS04 2 1 2 3 1 2 1 3 3 1 1 2 3 2 3 1 2 1 3 3 1 1 2 3 2 3 1 2 1 3 3 1 1 2 3 2 3 1 2 1 3 3 1 1 2 3 2 3 1 2 1 3 3 1 1 2 3 2 3 1 2 1 3 3 1 1</th> <th>PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 PS04 PS05 2 1 2 3 1 2 1 3 3 1 1</th>	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 2 1 2 3 1 2 1 3 3 2 3 2 3 1 2 1 3 2 3 2 3 1 2 1 3 2 3 2 3 1 2 1 3 2 3 2 3 1 2 1 3 2 3 2 3 1 2 1 3 2 3 2 3 1 2 1 3	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 2 1 2 3 1 2 1 3 3 2 3 2 3 1 2 1 3 3 2 3 2 3 1 2 1 3 3 2 3 2 3 1 2 1 3 3 2 3 2 3 1 2 1 3 3 2 3 2 3 1 2 1 3 3 2 3 2 3 1 2 1 3 3	2 1 2 3 1 2 1 3 3 1 2 3 2 3 1 2 1 3 3 1 2 3 2 3 1 2 1 3 3 1 2 3 2 3 1 2 1 3 3 1 2 3 2 3 1 2 1 3 3 1 2 3 2 3 1 2 1 3 3 1 2 3 2 3 1 2 1 3 3 1 2 3 2 3 1 2 1 3 3 1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 2 1 2 3 1 2 1 3 3 1 1 2 3 2 3 1 2 1 3 3 1 1 2 3 2 3 1 2 1 3 3 1 1 2 3 2 3 1 2 1 3 3 1 1 2 3 2 3 1 2 1 3 3 1 1 2 3 2 3 1 2 1 3 3 1 1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 PS04 2 1 2 3 1 2 1 3 3 1 1 2 3 2 3 1 2 1 3 3 1 1 2 3 2 3 1 2 1 3 3 1 1 2 3 2 3 1 2 1 3 3 1 1 2 3 2 3 1 2 1 3 3 1 1 2 3 2 3 1 2 1 3 3 1 1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 PS04 PS05 2 1 2 3 1 2 1 3 3 1 1

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD

I

Effective from Session: 2020-	21								
Course Code	BE 202	Title of the Course	Microbiology	L	Т	Р	С		
Year	II	Semester	III	2	1	0	3		
Pre-Requisite	None	Co-requisite	None						
	This course utilizes the theoretical approach to the study of microorganisms and offers the student a comprehensive								
Course Objectives	knowledge of	owledge of the fundamentals of microbiology.							

	Course Outcomes
CO1	The students will learn about the basics of microbiology and their classification.
CO2	The students will learn about the microbial mechanism of pathogenecity
CO3	The students will learn about the microbial nutrition and growth and understanding of different techniques to get pure culture.
CO4	The students will learn about the different aseptic techniques used to control the microorganisms.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction to microbiologyand microbial diversity	Microbiology and its scope, Biogenesis and Abiogenesis theories, Koch's postulates. Microbial diversity: Morphology, structure and microbial diversity bacteria, fungi, viruses and protozoa. Characteristic of prokaryotic and eukaryotic cells	8	1
2	Pathogenesis of microorganisms:	Some common pathogenic microorganisms: Bacterial (tuberculosis, gall), viral(SARS, TMV), fungal (red rot of sugar cane, dermatitis) and protozoan (malaria).	8	2
3	Microbial nutrition and Genetics	Microbial media design and types, microbial isolation techniques: dilution, pourplate and streak plate, Microbial growth curve and growth measurements, pure culture, starter culture, cultural characteristics of bacteria, Types of staining (Gram Staining and Endospore staining) Genetic exchange methods: transformation, conjugation and transduction.	8	3
4	Control of microorganisms	Physical agents (Autoclave, Hot air oven, Laminar airflow and membrane filter.), chemical agents (Alcohol, Halogens and Gaseous agents, antibiotics), Radiation Methods (UV rays).	8	4
Reference	Books:			
1.		evin: Microbiology; 2nded.		
2.	Brock, Micheal and Cla	rk: Microbiology of Microorganisms; 12th edition.		
3.	Introduction to Microbi	ology: Pelczar.		
e-Lean	rning Source:			

PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	1				2		2			2	1	2	
CO2	3	3	3	3	2	1	3	2	2	1	1	3	3	3	2
CO3	2	1	1	2	3	1	1	1	1	1	1	2	2	2	1
CO4	3	3	3	2	2		3	1	1		1	2	3	2	1

Name & Sign of Program Coordinator	
	Sign & Seal of HoD

Effective from Session:	2022-23									
Course Code	ME221	Title of the Course	FLUID FLOW AND SOLID HANDLING	L	Т	Р	С			
Year	II	Semester	III	2	1	0	3			
Pre-Requisite	NONE	Co-requisite	o-requisite NONE							
Course Objectives	 To develop und To imbibe basic flow measurement To give fundam 	erstanding about hydros laws and equations use and its applications in l ental knowledge of cent	d, its properties and behavior under various conditions of int tatic law, manometers and application energy equation in flu d for analysis of static and dynamic fluids and to inculcate t Industries. trifugal pump, reciprocating pump, positive displacement pu ties of solids, screening, industrial screening equipment, Cru	uid flo he imp ımp an	w. portance nd blow	e of flui er				

	Course Outcomes							
CO1	State the Newton's law of viscosity and explain the mechanics of fluids at rest and in motion by observing the fluid phenomena.							
CO2	Derive Euler's Equation of motion and Deduce Bernoulli's equation, application of Bernoulli's equation							
CO3	Explain the working principle and working of flow measuring devices.							
CO4	Explain the working of hydraulic machine-like centrifugal pump, reciprocating pump, positive displacement pump etc.							
CO5	Explain the handling of solid, industrial screening equipment and size reduction equipment.							

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO							
1	Fluid Properties Fluid Statics	Physical properties of fluids, ideal and real fluids, Newtonian and Non-Newtonian fluids, surface tension etc. Fluid pressure, Hydrostatic Law and Manometer.	8	CO1							
2	Fluid Kinematics Fluid dynamics	Steady and unsteady, uniform and non-uniform, laminar and turbulent flows, continuity equation. Euler's equation of motion, Bernoulli's equation from Euler's equation, Applications of Bernoulli's equation. Losses in pipe flow.	8	CO2							
3	measurements flow meter, Venturi meter, Rota meter and Pitot tube. Simple calculation on them.										
4	4 Pumping and compressing Classifications, working, Introduction to vector diagram and work done by impeller. Reciprocating pump theory, Slip and coefficient of discharges, Indicator diagram, Effect and acceleration, Work saved by fitting air vessels. Introduction of positive displacement pump, blowers and fluidization.										
5	Solid and their handling	Properties of solids, screening, industrial screening equipment, determination of particle size, screen analysis, size reduction of solids, stages of reduction, operating variables, intermediate and fine size reduction, power requirement and mechanism, Power driven machines: Crushers, grinders and conveyers.	8	CO5							
Referen	ce Books:										
Introduc	ction of Fluid Mech'a	nics by Robert W. Fox and Slan T. Mcdonald, John urley & sons, Ny. Fourth Ed.									
Unit Op	eration in Chemical E	Engg., Mccable Smith., 5th edition Tata McGraw publication House									
Bedger W.L. and Bancharo J. T. "Introduction to Chemical Engineering" Tata McGraw publication House.											
Hydraul	Hydraulic Machines: Jagdish Lal, Metropolitan Book Co.										
Hydraul	ics and Fluid Mechan	ics: Modi and Seth, Standard Book House									
. I	mina Courses										

e-Learning Source:

https://www.youtube.com/watch?v=fa0zHI6nLUo&list=PLbMVogVj5nJTZJHsH6uLCO00I-ffGyBEm https://www.youtube.com/watch?v=HGbbdXNcIQA&list=PLbMVogVj5nJQEgL1sHuY24d6omOqXInnt https://youtu.be/elUIbOnJc7c?t=556

					Course	e Articul	ation Ma	atrix: (M	apping o	of COs wit	h POs and	l PSOs)			
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1		2						3	3	2	2
CO2	3	3	3	2		3						3	3	3	2
CO3	3	3	3	2		3						3	3	2	1
CO4	3	2	2	2		3						3	3	2	1
CO5	3	3	2	1		3						3	3	2	2

Effective from Session:											
Course Code	MT203	Title of the Course	Numerical and Statistical Analysis	L	Т	Р	С				
Year	II	Semester	III	2	1	0	3				
Pre-Requisite	10+2 with PCM/PCB	Co-requisite									
Course Objectives	The purpose of this undergraduate course is to impart basic and key knowledge of numerical and statistical analysis. Numerical and statistical analysis plays very important for higher studies. After successfully completion of course, the student will able explore subject into their respective dimensions.										

	Course Outcomes
CO1	Students will be able to calculate and analyze Errors in numerical computations. Students will also be able to find the solutions of algebraic and transcendental equations using Bisection method, Iteration method, False position method and Newton-Raphson method.
CO2	Students will be able to understand difference operators and Factorial polynomials. They will also be able to interpolation for equal and unequal intervals by using Newton's forward and backward formula, Stirling's formula, Bessel's formula Laplace Everett's interpolation, Divided difference, Newton's divided difference formula, LaGrange's Interpolation formula.
CO3	Students will be able to compute differentiation using interpolation methods and will also be able to find Numerical integration by Trapezoidal rule, Simpson's 1/3 rule, Simpson's 3/8 rule, Boole's rule, Weddle's rule.
CO4	Students will be able to understand the concept of probability, addition and multiplication theorem of probability, conditional probability and probability distributions namely Binomial distribution, Poisson distribution and Normal distribution.
CO5	Students will be able to understand the concept of probability, addition and multiplication theorem of probability, conditional probability and probability distributions namely Binomial distribution, Poisson distribution and Normal distribution.

Uni t No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction of Algebraic method	Errors in numerical computations, numerical solution of algebraic and transcendental equations by Bisection method, Iteration method, Regula false method, Newton-Raphson's method.	8	C01
2	Factorial Polynomial	Finite differences: forward and backward differences, properties of operators, factorial polynomials, Interpolation: Newton Gregory forward and backward interpolation formula. Interpolation formula for unequal intervals, divided differences formula, central interpolation formula: Bessel, Stirling and Laplace Everett's interpolation formulae	8	CO2
3	Concept of Numerical	Numerical differentiation, Numerical integration by Trapezoidal rule, Simpson's 1/3 rule, 3/8 rule, Boole's rule, Weddle's rule.	8	CO3
4	Concept of probability	Probability: Classical and axiomatic definition of probability. Addition and Multiplication theorem of probability. Conditional probability. Probability distributions: Binomial distribution, Poisson distribution and Normal distribution.	8	CO4
5	Concept of Hypothesis	Testing of Hypothesis: Statistical hypothesis, null and alternative hypothesis, simple and composite hypothesis, critical region, type I and II error, power of a test. Test of significance based on t, F and chi-square distribution. Basic concepts of Simple random sampling and Stratified random sampling. Analysis of variance (ANOVA): One-way and two-way classification.	8	CO5
Referenc	e Books:			

1. Text book of Numerical Analysis: H.C. Saxena (S. Chand Publication), 2. Numerical Analysis: S. S., Shastri

Numerical Analysis: B.S. Grewal.
 Numerical Analysis: A.R. Vashistha., 5.Q. S Ahmad, V. Ismail and S.A Khan: Biostatistics, laxmi Publications
 S.C. Gupta and VK. Kapoor: Fundamental of Mathematical Statistics, Sultan Chand publication

e-Learning Source:

T.CC. . 4*-

0

https://nptel.ac.in/courses/111/106/111106101/, https://www.youtube.com/watch?v=QqhSmdkqgjQ

 PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	3	1	2	3	1	2	1	2	2	2 2		2	1	3	2
CO2	3	1	2	3	3	3	2	2	2	2	2	2	3	2	2
CO3	3	1	2	3	3		3	2	2	2	2	2	2	1	1
CO4	3	1	2	3	3		3	3	3	3	3	3	3	2	1
CO5	3	1	2	3	3	3	3	3	3	3	3	3	3	3	2

1-

	Effective from Session: 202	20-21										
ľ	Course Code	CS228	Title of the	Concepts of Web Development	L	Т	P	C				
			Course									
	Year	п	Semester	III	2	1	0	3				
ĺ	Pre-Requisite	None	Co-requisite	None								
	Course Objectives		his course utilizes the theoretical approach to the study of web development and offers the students comprehensive nowledge of the basic concepts of Web development.									

	Course
	Outcomes
CO1	The students will learn about the basics of web development.
CO2	The students will learn about the Hypertext language like Html/DHTML.
CO3	The students will learn CSS language.
CO4	The students will learn JavaScript language.
CO5	The students will learn basic of XML.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
Unit-1	Introduction to Web development strategies	History of Web,Protocols governing Web, Creating Websites for individual and Corporate World, Cyber Laws, Web Applications, Writing Web Projects, Identification of Objects, Target Users, Web Team, Planning and Process Development.	8	1
Unit2	Basic of HTML/DHT ML	Introduction to HTML and DHTML, Basic structure of HTML/DHTML, Basic tags of HTML, Attribute, Element, Paragraphs, Heading tag, Font tag, Formatting tags, Creating links, Table, frames, List.	8	2
Unit3	CSS	Introduction to CSS, Syntax, Comments, Colors, Backgrounds, Borders, Margins, Padding, Box Model, Outline, Text, Font, Icon, Links, List, Layout.	8	3
Unit4	JavaScript	Introduction to JavaScript, Syntax, Statement, Comments, Variables, Keywords(Let, Const),Operators, Data types, Functions, Objects, Events, Strings, Arrays.	8	4
Unit5	XM	Introduction to XML, How can XML be used, XML Tree, XML syntax Rule, Elements, Attributes, Namespaces, Displaying XML, XML Validator, XML DOM.	8	5

Reference Books:

1-Bushan, "Collaborative Web Design Addison Wesley

2-Jeffrey Jackson "With Technologies-A Computer Science Perspective". Pearson Education

3 -XML& Related Technologies by Atul Kata Pearson Education India.

PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	1	1	1	1	2		2	1	1	2	1	2	1
CO2	3	3	3	3	2	1	3	2	2	1	1	3	3	3	2
CO3	2	1	1	2	3	1	1	1	1	1	1	2	2	2	1
CO4	3	3	3	2	2	2	3	1	1	1	1	2	3	2	1
CO5	2	3	2	1	3	2	1	1	1	1	1	2	3	2	1

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2020-2021												
Course Code	BE205	Title of the Course	PLANT PHYSIOLOGY	L	Т	Р	С					
Year	II	Semester	III	2	1	0	3					
Pre-Requisite	None	Co-requisite	None									
Course Objectives	To build up t	build up the knowledge of students in pertinent plant physiological processes and physiological aspects of crop yield.										

	Course Outcomes								
CO1	Understand a plant cell with respect to different organelles, their physiological functions, growth and development and the transport of water								
	and nutrients.								
CO2	Understand the transport of water, gases and nutrients in plants.								
CO3	Understand essential minerals, macro and micronutrients, their role and deficiency symptoms and analyze the growth of plants in their								
	absence.								
CO4	Understand the role of growth regulators and phytochromes in plants. Evaluate the effect of growth regulators on the growth and development								
	of plants.								

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Plant cells, tissues, and organs	Cell organelles and their physiological functions; Structure and physiological functions of cell walls; Growth and development in plants.	8	CO1
2	Transport in plants	Movement of water, gases and nutrients; Cell to cell transport-Diffusion, facilitated diffusion, active transport; Plant–water relations–Imbibition, water potential, osmosis, plasmolysis; Long distance transport of water–Absorption, apoplast, symplast, transpiration pull, root pressure and guttation; Transpiration – Opening and closing of stomata; Uptake and translocation of mineral nutrients, Transport of food, phloem transport.	8	CO2
3	Mineral nutrition	Essential minerals, macro and micronutrients and their role; Mineral deficiency and their symptoms; Mineral toxicity; Elementary idea of Hydroponics as a method to study mineral nutrition.	8	CO3
4	Plant growth regulators in plant phytochromes	Auxin, gibberellin, cytokinin, ethylene, ABA; Seed dormancy; Vernalization; Phytochromes- mode of action; photoperiodism-short day, long day and day neutral plants; photoperiodic induction; photoperiod and plant flowering.	8	CO4
Referen	ce Books:			
1.	Plant Physiology by Lince	oln Taiz and Eduardo Zeiger		
2.	Plant Physiology by Frank	x Salisbury and Cleon Ross.		
3.	Text Book of Plant Physic	ology, Biochemistry, and Biotechnology by V.K. Varma and Mohit		
4.	Varma, S. Chand Ltd.			
e-Lear	ming Source:			
	ww.youtube.com/watch?v=	=gUwwvGB0gz8		
-	/ww.youtube.com/watch?v=			

PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO	101	102	105	101	105	100	107	100	10)	1010	1011	1012	1501	1502	1505
CO1	1	1	1	2	2	2	2	1	1	1	2	3	2	2	2
CO2	1	1	1	2	2	2	2	1	1	1	2	3	2	1	2
CO3	1	1	1	3	2	1	1	1	1	1	1	3	3	2	1
CO4	1	2	3	3	3	1	1	1	1	2	2	3	3	2	1

Name & Sign of Program Coordinato	r Sign & Seal of HoD

Effective from Session: 2020-21												
Course Code	BE206	Title of the Course	Animal Physiology	L	Т	Р	С					
Year	II	Semester	III	2	1	0	3					
Pre-Requisite	None	Co-requisite	None									
Course Objectives	however, cell Furthermore,	ular and molecular mech emphasis will be place Vhere appropriate, basic	ciples and basic facts of Animal Physiology with focus on o nanisms will be discussed in order to present a current view of d on nervous, muscular, cardiovascular, respiratory, renal, chemical and physical laws will be reviewed in order to enha	physio digest	ological ive, and	princip l endoci	oles. rine					

	Course Outcomes								
CO1	Students will learn about the types of the tissues, mechanism of blood coagulation, RBC membrane structure and functions and anticoagulants.								
CO2	Students will learn about the functioning and physiology of cardiovascular system and respiratory system.								
CO3	Students will understand the concept of digestion of various biomolecules and functioning of excretory system.								
CO4	Students will acquire the knowledge of nervous system, muscular system, endocrine systems, their physiology and basic functions.								

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO						
1	Tissues	Types of tissue. Epithelium- organization and types. The basement membrane. Bone and cartilage. The extracellular matrix of epithelial and non-epithelial tissues. Elementary details of ECM components. Blood and circulation-Composition and functions of blood. Separation of plasma and serum. Plasma proteins in health and disease. Red blood cells- formation and destruction. The RBC membrane- principal proteins (spectrin, ankyrin, glycophorins). Composition and functions of WBCs. Blood coagulation- mechanism and regulation. Fibrinolysis. Anticoagulants.	8	CO1						
2	Respiratory System regulation. Respiratory system-transport of gases, exchange of gases, waste elimination, neural and chemical regulation of respiration.									
3	Digestive and Excretory system	Digestive and Digestion, absorption, energy balance, BMR. Digestion and absorption of carbohydrates, lipids, proteins and nucleic acids. Excretory system-Comparative physiology of excretion, kidney, urine formation, urine concentration, waste elimination, micturition, regulation of water balance, electrolyte balance.								
4	Neuromuscular System and Endocrinology	Structure of neuron. Propagation of action potential: The neuromuscular junction. The acetylcholine receptor. Gross neuroanatomy of the brain and spinal cord, central and peripheral nervous system. Structure of skeletal muscle. Sequence of events in contraction and relaxation of muscle. Endocrine glands, basic mechanism of hormone action, hormones and diseases.	8	CO4						
	nce Books:									
Lodishe	etal. Molecular Cell Biol	ogy 6th ed. 2007, WH Freeman.								
Murray	et al. Harper's Illustrate	d Biochemistry 27th ed. McGraw Hill 2006.								
Smith et	t al. Principles of Bioche	emistry. Mammalian Biochemistry. McGraw Hill 7th ed.								
De Robe	ertis and De Robertis. C	ell and Molecular Biology. Lippincott 2001.								
Alberts	et al. Molecular Biology	v of the cell 5th ed. Garland Sci. 2007.								
Guyton	and Hall.Textbook of M	Iedical Physiology 12ed 2011.								
e-Lea	rning Source:									
http://	https://drive.google.com/file/d/12hc21_WfHzfP2AKhzW/a_IEVV/050DV/upW/view/)ucp-sharing									

https://drive.google.com/file/d/13hs2l-WfHzfR3AKhzWq-IFYVO5ODYvpW/view?usp=sharing

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	1	2	2		1	2		1	1		3	3	2	3
1	1	2	1		1	2		1	1		3	2	2	3
1	1	2	2		1	2		1	1		3	2	2	3
1	1	2	1		1	2		1	1		3	2	2	2
	PO1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PO1 PO2 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 1 1 2 1 1 2 1 1 2	1 1 2 2 1 1 2 1 1 1 2 2 1 1 2 2	1 1 2 2 1 1 2 1 1 1 2 2	PO1 PO2 PO3 PO4 PO5 PO6 1 1 2 2 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 2 2 1 1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 1 1 2 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 2	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 1 1 2 2 1 2 1 2 1 2 1 1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 1 1 2 2 1 1 2 1 1 1 2 1 1 2 1 1 1 1 1 1 2 2 1 1 2 1 1 1 1 2 2 1 1 2 1 1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 1 1 2 2 1 2 1 1 1 1 2 1 1 2 1 1 1 1 2 1 1 2 1 1 1 1 2 2 1 1 2 1 1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 1 1 2 2 1 2 1 <th>PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 1 1 2 2 1 2 1 1 3 1 1 2 1 1 2 1 3 1 1 2 1 1 2 1 1 3 1 1 2 2 1 2 1 1 3 1 1 2 2 1 2 1 1 3</th> <th>PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 1 1 2 2 1 2 1 1 2 3 3 1 1 2 1 1 2 1 3 3 1 1 2 1 1 2 1 3 2 1 1 2 1 2 1 1 3 2 1 1 2 2 1 2 1 1 3 2</th> <th>PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 1 1 2 2 1 2 1 1 3 3 2 1 1 2 1 2 1 1 1 3 3 2 1 1 2 1 2 1 1 1 3 2 2 1 1 2 1 2 1 1 1 3 2 2 1 1 2 1 2 1 1 1 3 2 2</th>	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 1 1 2 2 1 2 1 1 3 1 1 2 1 1 2 1 3 1 1 2 1 1 2 1 1 3 1 1 2 2 1 2 1 1 3 1 1 2 2 1 2 1 1 3	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 1 1 2 2 1 2 1 1 2 3 3 1 1 2 1 1 2 1 3 3 1 1 2 1 1 2 1 3 2 1 1 2 1 2 1 1 3 2 1 1 2 2 1 2 1 1 3 2	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 1 1 2 2 1 2 1 1 3 3 2 1 1 2 1 2 1 1 1 3 3 2 1 1 2 1 2 1 1 1 3 2 2 1 1 2 1 2 1 1 1 3 2 2 1 1 2 1 2 1 1 1 3 2 2

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective	from Session:										
Course	ES202	Title of the	Disasters, Management	L	Т	Р	С				
Code		Course				0	3				
Year	II	Semester	Semester III 2								
Pre-	10+2 having a minimum of 45% marks										
Requisite	in the aggregate from a recognized	Co-requisite									
Requisite	Board/University										
	• To Study the types of Disasters and its profile in India. • Knowledge of causes and impacts of Disasters, and Case studies of National and Global Disasters. • To learn about risk reduction										
Course Objective	approaches of Disasters, and ease studies of National and Orobal Disasters. • To team about his reduction										
Objective	Management Cycle and its Risk Reduction Measures. • To know the National Acts and policies for mitigating										
	disasters. Role of Army, Police, Community, Corporate, Media etc. for post Disaster Management.										
		Course Outcon	nes								
CO1	Students are able to learn types of disasters and	d its profile in India									
CO2	Students are able to understand the causes and impacts of disasters on environment										
CO3	Students are able to learn about risk reduction	approaches of disaste	ers with safety issues in mitigating	industria	disaste	rs.					
CO4	To understand the concept of Disaster Manage	ment Cycle and its R	isk Reduction								
CO5	To understand the concept of Disaster Manage	ment Cycle and its R	isk Reduction								

Unit No.]	Fitle o Un								Cont	ent of l	Unit				-	ontact Hrs.	Mappe d CO
1		roduct aster	ion to		troduc isaster				Conce	pts, De	efinitio	n and ty	pes (Nat	ural and	Man-mad	e),	8	CO1
2		pact of saster	f		Causes and Impacts of Disasters, Global and National Perspective, Case studies fro Disasters, Large Hydro projects and its risks for Disasters											om	8	CO2
3		saster sk Red	uction	A	Approaches to Disaster risk Reduction, Safety issues in mitigating Industrial disasters Case studies, EHS etc.										5,	8	CO4	
4		saster anagen	nent		isaster Management Cycle, Risk Reduction Measures (Preparedness, Mitigation esponse										on,	8	CO3	
5		saster A			ational DRF,	ional Acts and policies for mitigating Disasters (Disaster Management Act 2005, 8 CO3												
Referen	nce Bo	ooks:														•		
	 Gupta Harsh K., Disaster Management, Hyderabad University Press. Publications-Meerut. 																	
(2) Seth	(2) Sethi, V.K., Disaster Management, New Delhi Maxford Books																	
(3) Bhat	ttacha	rya, T	ushar,	Disast	ter Sci	ence a	nd Ma	nagem	ent, N	ew Del	hi Tata	Mc Gra	w Hill.					
(4) Nidł	hi Gau	ıba, D	hawan	/ Amb	rina S	ardar I	Khan, I	Disaste	er Mar	ageme	nt and l	Prepared	ness, CB	S				
e-Lea										0			,					
https://v				/watch	1?v=9	WWlli	va s											
https://v								ΥA										
1000011		June	2.2011	, trater					tion N	latrix:	(Mapr	oing of C	COs with	POs and	PSOs)			
PO- PSO CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	2	1	1	1	1	1	3	2	1	1	2	1	1	1	1	-	-	-
CO2	2	2	2	1	2	3	3	2	2	2	2	2	1	1	1	-	-	-
CO3	3	2	2	1	2	2	3	2	2	2	1	2	2	1	1	-	-	-
CO4	3	2	2	1	2	2	3	2	2	1	1	2	1	1	1	-	-	-
CO5	3	1	3	2	2	2	2	2	3	2	1	2	1	1	1	-	-	-

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session:										
Course Code	BM-226	Title of the CourseHuman Values & Professional Ethics,LTPC								
Year	П	Semester	ster III 3 0							
Pre-Requisite	None	Co-requisite	None							
Course Objectives	profession, T Human Value that engineers	o justify the moral judg es.To inspire Moral and s should display concerr	bught to guide the Management profession, Resolve the mor- nent concerning the profession. To create an awareness on N Social Values and Loyalty. Intended to develop a set of beli- ning morality. To create awareness about the important globa computer ethics - weapons development	/lanag efs, at	ement I titudes,	Ethics a and ha	bits			

	Course Outcomes
CO1	Development of moral and ethical values, right understanding and relationships
CO2	Knowledge of Moral Rights and Moral rules, Moral character and responsibilities. Privacy, Confidentiality, Intellectual Property rights and its laws.
CO3	Awareness about the Professional Responsibility of engineers, Responsibility of engineers related to risks, hazards and safety.
CO4	Development of Engineers Ethics. Understanding of variety of moral issues, moral judgment concerning the profession.
CO5	Understanding of various of global issues; Environmental ethics - computer ethics - weapons development.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mappe d CO
1	Human Value Education	Understanding the need, basic guidelines, content and process for Value Education, Self-Exploration. Its content and process; 'Natural Acceptance' and Experiential Validation- as the mechanism for self- exploration, Continuous Happiness and Prosperity- A look at basic Human Aspirations, Right understanding, Relationship and Physical Facilities- the basic requirements for fulfillment of aspirations of every human being with their correct priority, Understanding Happiness and Prosperity correctly.	6	CO1
2	Introduction to Ethical Concept	Definition of industrial ethics and values, Ethical rules of industrial worker. Values and Value Judgments. Moral Rights and Moral rules, Moral character and responsibilities. Privacy, Confidentiality, Intellectual Property and the Law. Ethics as Law.	6	CO2
3	Professional Responsibility	The basis and scope of Professional Responsibility, Professions and Norms of Professional Conduct, Ethical Standards versus Profession, Culpable mistakes, the Autonomy of professions and codes of ethics. Employee status and Professionalism. Central Professional Responsibilities of Engineers: The emerging consensus on the Responsibility for safety among engineers, hazards and risks.	6	CO3
4	Engineers Ethics	Senses of 'Engineering Ethics' - variety of moral issues - types of inquiry - moral dilemmas – moral autonomy - Kohlberg's theory - Gilligan's theory - consensus and controversy – Models of Professional Roles theories about right action – Self-interest - customs and religion - uses of ethical theories. Valuing Time – Cooperation – Commitment.	6	CO4
5	A Glimpse of Life Stories, Global Issues	Life story of Prophet Mohammad, Mahatma Gandhi, Swami Vivekanand, Marie Curie and Steve Jobs. Multinational corporations - Environmental ethics - computer ethics - weapons development - engineers as managers consulting engineers-engineers as expert witnesses and advisors -moral leadership.	6	CO5
Refere	nce Books:			
1. I	R.S. Naagarazan 20	06, "A Textbook on Professional Ethics and Human values" New Age International Publisher.		
2. I	R R Gaur, R Sangal,	G P Bagaria, 2009, A Foundation Course in Value Education.		
3. Mi	ke Martin and Rolar	nd Schinzinger, "Ethics in Engineering", McGraw-Hill, New York 1996.		
e-Lea	arning Source:			
1 1	Volue Education we	heita http://www.uptu.ac.in_2_Story.of Stuff http://www.story.ofstuff.com		

1. Value Education website, http://www.uptu.ac.in . 2. Story of Stuff, http://www.storyofstuff.com

				C	ourse A	rticulati	ion Mat	rix: (Ma	apping of	COs with l	POs and PS	SOs)			
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO	101	102	100	10.	100	100	107	100	10/	1010	1011	1012	1501	1002	1500
CO1	3	3	2	3	3			3		2		2	2	2	3
CO2	3	3	2	3	3			2					2	3	3
CO3	2	3	2	3	2			3		3			3	3	3
CO4	2	3	2	3	2			2				1	3	3	2
CO5	3	2	3	3	2			3		2		1	2	2	3
		2	T	7 1 .	4	M l .	A C		····· 2 C	- hatantial	C				

Effective from Session: 2020)-21						
Course Code	BE203	Title of the Course	Biochemistry Lab	L	Т	Р	С
Year	П	Semester	III	0	0	6	3
Pre-Requisite	None	Co-requisite	None				
Course Objectives	This course w	vill give the knowledge	of estimations and separation of various biomolecules using	standa	ard prot	ocols.	

	Course Outcomes
CO1	The students will be able to learn how to perform the estimations of biomolecules like carbohydrates, nucleic acids and proteins in-vitro.
CO2	The students will acquire skills related to isoelectric precipitation in context of amino acids.
CO3	The students will acquire skills related to separation of biomolecules using chromatography.
CO4	The students will be able to determine how lipids are extracted in-vitro from the living samples and also know the methods for separation of
	biomolecules using electrophoresis.
CO5	The students will be able to learn the concept of enzyme kinetics and how the concentration of enzymes are estimated in living cell by
	in-vitro analysis.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Carbohydrates	Estimation of carbohydrates	6	CO1
2	Proteins	Estimation of proteins		CO1
3	Nucleic acids	Estimation of nucleic acids	6	CO1
4	Isoelectric point	Isoelectric precipitation	6	CO2
5	Paper chromatography	Separation of amino acids by paper chromatography	6	CO3
6	TLC	Thin layer chromatography	6	CO3
7	Lipids	Extraction of lipids	6	CO4
8	Electrophoresis	Gel electrophoresis	6	CO4
9	Enzyme kinetics	Assay of enzyme activity and enzyme kinetics	6	CO5
Refere	ence Books:	·		
1. S.K	K. Sawhney; Introductory Practica	l biochemistry; Narrosa Pub.		
2. J.J	ayaraman; Lab. Manual in Bioche	emistry; New Age Int. Pub.		
3. Wil Hil		emistry; Cambridge publication. David T Plummer; An introduction to practical bio	chemistry; Ta	ata McGraw

e-Learning Source:

https://jru.edu.in/studentcorner/lab-manual/bpharm/Lab%20Manual%20-%20Biochemistry.pdf

						Course	Articu	lation I	Matrix: (N	Mapping of	COs with I	POs and PSO	Os)		
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3		1	1					3	3	3	3
CO2	3	3	3	3		1	1					3	3	3	3
CO3	3	3	3	3		1	1					3	3	3	3
CO4	3	3	3	3		1	1					3	3	3	3
CO5	3	3	3	3		1	1					3	3	3	3

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2020)-21									
Course Code	BE 204	Title of the Course	Microbiology lab	L	Т	Р	С			
Year	II	Semester	mester III 0 0							
Pre-Requisite	None	Co-requisite	None							
Course Objectives		objective of this lab is to utilizes the practical approach to the study of microorganisms, their isolation and culturing offers the student a comprehensive knowledge of microbiology and their application								

	Course Outcomes
CO1	The students will learn about the fundamentals of microbiology and its importance in the field of biotechnology, medical microbiology and
	immunology.
CO2	The students will be able to prepare different nutrient media and its sterilization and inoculation. They will also learn about different methods
	of staining of bacteria and spores.
CO3	They will also learn how to perform the experiments to get pure culture from mixed population and its quantitative and qualitative analysis.
CO4	Knowledge of these experiments will be immensely beneficial for the students for the higher studies related to Microbiology, Medical
	Microbiology and Biotechnology.
CO5	The students will get the industrial exposure for better understanding of subject

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Nutrient media preparation	Preparation of nutrient agar slants, plates and nutrient broth and their sterilization. Inoculation of agar slants, agar plate and nutrient broth (Incubators, Water bath, Laminar hood, dry heat sterilizer i.e. bead sterilizer)	6	1
2	Culture of microorganisms and staining	Culture of microorganisms using various techniques. Simple and differential staining procedures, endospore staining, flageller staining, cell wall staining, capsular staining, negative staining.	6	2
3	Bacterial colony counting Bacterial colony counting and observation of different forms of bacteria			3
4	Isolation of microbes	Isolation of microbes from soil samples and determination of the number of colony forming units.		4
5	Determination of growth curve	Study of growth curve of E. coli	6	5
Referen	ce Books:			
Lab Ma	nual in microbiology by	P Gunasekaran (New Age Int. Pub.).		
e-Lea	rning Source:			

PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO 3
C01	1	1	1	1	2		1	2	1	1	1	3	3	3	1
CO2	2	2	2	2	3	2	1	1	2	1	2	3	3	3	1
CO3	1	1	2	1	3	1	2	2	1	1	1	2	3	3	1
CO4	1	1	1	1	2	1	3	3	2	1	1	2	2	3	2
CO5	2	1	1	2	1	3	2	3	1	2	2	2	3	3	3

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD

			mversity, Edeknow				
Effective from Session: 2017	/-18						
Course Code	ME223	Title of the Course	Fluid Mechanics Lab	L	Т	Р	С
Year	П	Semester	III	0	0	4	2
Pre-Requisite	None	None					
Course Objectives	 To To the To dist To 	impart practical knowled impart practical knowled lower critical Reynolds impart practical knowled ribution in the pipe flow impart practical knowled	dge/techniques to measure the flowrate in pipe flow and find	haw aj lent flo 1 the v	ow and velocity	determ	

	Course Outcomes
CO1	Learn the concept of Bernoulli's Theorem and apply it to find the discharge using Venturi meter and Orifice meter.
CO2	Plot the flow pattern net using the Hele-Shaw apparatus
CO3	Study the transition from laminar to turbulent flow and determine the lower critical Reynolds number.
CO4	To calibrate the venturi meter, orifice meter and find the velocity distribution in the pipe flow.
CO5	Determine the variation of friction factor 'f', for turbulent flow in commercial pipes. and find the C _D in rectangular notch.

Exper iment No.	Title of the Experiment	Content of Unit	Contact Hrs.	Mapped CO
1	Bernoulli's Equation	To verify Bernoulli's Equation experimentally.	4	CO1
2	Hele-Shaw apparatus	To Plot the flow net using the Hele-Shaw apparatus	4	CO2
3	Laminar and Turbulent flow	To Study the transition from laminar to turbulent flow and determine the lower critical Reynolds number.	4	CO3
4	Venturi meter	To calibrate a venturi-meter and study the variation of the coefficient of discharge with the Reynolds number.	4	CO4
5	Orifice meter	To calibrate an orifice meter and study the variation of the coefficient of discharge with the Reynolds number.	4	CO4
6	Velocity Distribution	To study the velocity distribution in a pipe.	4	CO4
7	Friction factor	To study the variation of friction factor 'f', for turbulent flow in commercial pipes.	4	CO5
8	Notch apparatus	To calibrate a given v-notch or a rectangular notch and determine the coefficient of discharge	4	CO5
e-Lear	rning Source:			
https:/	//fm-nitk.vlabs.ac.in/			

						Course	e Articu	lation 1	Matrix: (Mapping o	of COs wit	h POs and P	SOs)		
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	2	3			3	2		3	3	2	3
CO2	3	3	2	3	2	2			3	2		3	3	3	2
CO3	3	3	3	2	2	2			3	2		3	2	2	2
CO4	3	3	3	2	3	3			3	2		3	3	2	2
CO5	3	3	3	3	2	3			2	2		3	3	2	3

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2020	Effective from Session: 2020-2021												
Course Code	BE207	Title of the Course	Immunology	L	Т	Р	С						
Year	II	Semester	IV	3	1	0	4						
Pre-Requisite	None	Co-requisite	None										
Course Objectives	The students	s will be able to ide	ntify the cellular and molecular basis of immune	respo	nsiver	iess.							

	Course Outcomes
CO1	Describe the fundamental principles of immune response including molecular, biochemical and cellular basis of immune
	homeostasis.
CO2	Describe the various aspects of immunological response and how it is triggered and regulated.
CO3	Understand the rationale behind various assays used in immunodiagnostic of diseases and will be able to transfer knowledge of
	immunology in clinical perspective.
CO4	Explain the principles of Graft rejection and Auto immunity.
CO5	Demonstrate a capacity for problem-solving about immune responsiveness, knowledge of the pathogenesis of diseases and
	designing of immunology-based interventions for effective treatment.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	The immune system	Introduction, Characteristics of innate and adaptive immunity, Humoral and cell mediated immunity, Cells and molecules of immune system, Primary and Secondary lymphoid organs, antigens, antigenicity and immunogenicity, Factor affecting the immunogenicity.		CO1
2	humoral immunity	B-Iymphocytes and their activation, structure and function of immunoglobulin, immunoglobulin classes and subclasses, Clonal selection of antibody production, polyclonal and monoclonal antibody and diagnosis, idiotypic antibodies, Structure and function of MHC molecules.	8	CO2
3	Cellullar Immunology	Thymus derived Lymphocytes (T Cells) their classification, antigen presenting cells (APC), Exogenous and endogenous pathways of antigen processing and presentation, cytokines and their role in immune response macrophage activation and granuloma formation, immunosuppression, immune tolerance. Structure, function and application of cytokines.	0	CO3
4	Antigen and antibody reaction	Serological techniques-ELISA, RIA and Immunoblotting. Immunity to Infection: Hypersensitivity reactions, complement system adjuvants, dose of antigens, types of vaccine preparation, Immunity against infectious diseases (virus, bacteria and protozoan).	8	CO4
5	Auto Immunity	Graft rejection, evidence and mechanisms of graft rejection, prevention of graft rejection, immunosuppressive drugs, HLA and disease, mechanisms of immunity to tumour antigens.; Auto antibodies in humans, pathogenic mechanisms, experimental models of autoimmune disease treatment of auto immune disorders and cancer.	0	CO5
Referen	ce Books:			
1. Kuby	's Immunology- Mu	urry, 5thed.		
		f and David K. Male. Immunology, Glower Medical Publishers, London.		
e-Lear	rning Source:			

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)																
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	1	2	2	3	3	3	2	1	1	2	2	2	3	1	1			
CO2	1	1	2	3	2	3	1	1	1	1	1	2	3	1	1			
CO3	2	2	1	3	3	3	1	1	2	2	3	3	3	1	1			
CO4	1	2	3	3	3	3	2	3	2	2	3	3	3	1	1			
CO5	1	2	3	3	3	3	2	3	2	2	3	3	3	1	1			

Name & Sign of Program Coordinator

Effective from Session: 2020-21									
Course Code	BE208	Title of the Course	Enzymology	L	Т	Р	С		
Year	Π	Semester	IV	3	1	0	4		
Pre-Requisite	None	Ione Co-requisite None							
Course Objectives		The objective of the course is to provide a deeper insight into the fundamentals of enzyme structure, function and kinetics of enzymes. Also it deals with current applications and future potential of enzymes.							

	Course Outcomes							
CO1	The students will be introduced to enzymes. They will be able to classify and name the enzymes. They will also learn about the physic-chemical							
COI	properties of enzymes.							
CO2	The unit will help the students to understand the enzyme kinetics.							
CO3	The students will learn about the applications of some industrially used enzymes.							
CO4	The students will learn about enzyme stabilization and immobilization.							
CO5	The students will know how to isolate intra/extra cellular enzymes from microorganisms. This will be helpful in courses such as fermentation							
005	technology and downstream processing. The students will also learn about the recent therapeutic and industrial applications of enzymes.							

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction to Enzymes	Introduction, classification and nomenclature of enzymes. Active site, isoenzymes, coenzymes, cofactors, turn over number, enzyme specificity, enzyme activity, specific activity, multi-enzyme complexes, Physico-chemical characteristic of enzymes. Effect of pH, temperature and substrate concentration on enzyme activity.	8	CO1
2	Enzyme kinetics	Enzyme kinetics, derivation of Michaelis Menten equation, measurement of Km and Vmax, Enzyme inhibition, kinetics of competitive, non-competitive and un-competitive inhibition of enzymes. Effect of pH, temperature and substrate concentration on enzyme kinetics. Allosteric enzymes and their kinetics.	8	CO2
3	Introduction to industrial enzymes	Topoisomerases, chymotrypsin, glyceraldehyde 3-phosphate dehydrogenase, lysozyme, carboxypeptidase, ribonuclease, lactases and ribozyme and their mechanism of action.	8	CO3
4	Folding and Stability studies	Molecular folding and defolding of enzymes. Stability of enzymes. Methods of enzyme immobilizations and their applications.	8	CO4
5	Isolation, purification, and characterization of the enzymes from microorganisms	Isolation, purification, and characterization of the enzymes from microorganisms. Intra cellular and extra cellular enzymes, Methods for lysis of plant, animal and microbial cell. Use of detergents in isolation of membrane proteins. Industrial, diagnosis and therapeutic application of enzymes.	8	C05
Referen	ce Books:			
1. Murra	ay Moo-Young-Comprh	ensive Biotechnology, II & IVth Vol.		
2. Bioch	nemistry- D. J. Voet & J.	. G. Voet, 6th ed.		
3. Metho	ods in Enzymology- A s	eries.		
4. Enzyı	me Kinetics-Hans Bissw	vanger, Wiley Publication.		
5. Bioca	telysis: Fundamentals a	nd Application- A.S. Bommarius et al., Wiley Publication.		
e-Lear	rning Source:			

https://youtu.be/gJNMryCX3YY

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)																	
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO																		
CO1	1	1	1	1	1	1		1				3	3	1				
CO2	1	3	2	3	2	2		1				3	3	3				
CO3	1	2	2	3	2	2	3	1				3	3	3				
CO4	1	2	2	2	3	3	1					3	3	3				
CO5	3	3	3	3	3	3	3	3				3	3	3	2			

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2020-21										
Course Code	BE209	Title of the Course	Molecular Biology	L	Т	Р	С			
Year	Π	II Semester IV 3 1 0								
Pre-Requisite	Molecular biology	Molecular biology Co-requisite None								
Course Objectives	The objective of the course is learning and understanding the DNA Replication. Transcription Protein Synthesis and									

	Course Outcomes							
CO1	Relate concepts of mutations and its types.							
	1 51							
CO2	Describe the general principles of replication in both prokaryotic and eukaryotic organisms. Discuss the various enzymes used in replication,							
	transcription processes							
CO3	To study about the process of transcription in both prokaryotes and eukaryotes and also the modifications of eukaryotic mRNA.							
CO4	Describe the general principle of protein synthesis in both prokaryotes and eukaryotes							
CO5	Learn about Operon concept, gene regulation and post translational changes in proteins							

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Central Dogma of Life	Central Dogma, Mutation: Spontaneous, induced; Chemical and physical mutagens; Non sense mutation; Missense mutation; Frame shift mutation; Suppressor mutation; Different methods of DNA repair and SOS response; transposable elements: retrotransposon, mechanism of transposition.	8	1
2	DNA Replication	DNA replication in prokaryotes: Roles of DnaA, Helicase, HD protein, Primase, DNA gyrase, Topoisomerase, DNA Polymerase III, DNA Polymerase I, DNA ligase, Fidelity, Regulation; DNA replication in eukaryotes: Autonomously replicating sequence, Origin recognition complex, Minichromosome maintenance proteins, DNA polymerases α , δ , ε , Nucleases, DNA ligase, Telomeres, Regulation; Mitochondrial DNA replication; Reverse transcriptase	8	2
3	Transcription	Transcription in prokaryotes: Outline of process, Promoter, RNA polymerase; Transcription in eukaryotes: Outline of process, Promoters, Enhancers, RNA polymerase I, II, III; Post transcriptional modifications: End modifications (Addition of 5' cap and 3" Poly A tail in mRNA), RNA splicing - Self splicing and Spliceosome mediated splicing, Cutting events or action of ribonucleases, Covalent modifications, RNA editing, Alternative splicing	8	3
4	Translation	Genetic code, Wobble hypothesis; Translation in prokaryotes and eukaryotes: Outline of process, Types of RNA, Structure of ribosome, Aminoacyl RNA transferase	8	4
5	Post-Translational Modifications	Post - translational processing: Intein splicing, Chemical modification, Proteolytic cleavage, Zymogen activation; Regulation of gene expression: Operon concept: Lac and Trp	8	5
Referen	ce Books:			
1	Albert B, Bray Denis et	al.: Molecular Biology of The Cell, latest ed.		
2.	Watson, Hopkin, Robe	erts et al.: Molecular Biology of the Gene, 4 th ed		
3.	Genetics – Strickberge	er, 2 nd		
4.	Microbial Genetics- D	. Frifielder.		
5.	Baltimore- Molecular	Biology of the Cell		
6.	Benjamin Levin - Gen	es VIII, 8 th ed.		
e-Lear	ning Source:			
1.		ps://www.youtube.com/watch?v=T1aR77FLdi0		
2.	Operon Concept, http	s://www.youtube.com/watch?v=h_1QLdtF8d0		

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)																	
PO-																		
PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO																		
CO1	CO1	1	2	1	1	1	1	1	2	1	1	1	3	3	3			
CO2	CO2	3	3	2	1	1	1	2	1	2	1	1	3	3	3			
CO3	CO3	3	3	2	2	1	1	1	2	2	1	1	3	3	2			
CO4	CO4	3	3	2	3	2	1	2	2	1	1	1	3	3	1			

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2020-2021										
Course Code	BE210	Title of the Course	Introduction to Bioinformatics	L	Т	Р	С			
Year	II	Semester	IV	2	1	0	0			
Pre-Requisite	None	Co-requisite	None							
Course Objectives	given to the students will	application of bioinforr	s an introduction to the basic practical techniques of bioinfor natics and biological databases to problem-solving in real he use of a wide variety of internet applications and biologic ch problems.	resear	ch prol	olems. 7	The			

	Course Outcomes									
CO1	Understand the basics of bioinformatics, its evolution, nucleotide databases, and their retrieval tools.									
CO2	Explain primary, secondary and composite protein databases and their impact on the display and analysis of biological data.									
CO3	Understand the retrieval of biological literature from NCBI bibliographic databases.									
CO4	Apply different biological tools to retrieve biological sequences, chemical compounds, scientific articles, and their analysis.									

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO						
1	Nucleotide Databases	8	CO1							
2	Protein Databases	Biological databases: Protein databases- Primary protein databases (e.g., SwissProt, Tr- EMBL, and PIR), Secondary protein databases (e.g., PROSITE, PRINTS, IDENTIFY, BLOCK, and PFAM), Composite databases (e.g., OWL, and NRDB)	8	CO2						
3	Bibliographic databases and File Formats	Biological databases: Literature databases (e.g., PubMed and PubChem), Biological file formats (e.g., GenPept/GenBank, FASTA, and EMBL), Applications of Bioinformatics	8	CO3						
4	Practicals	 Retrieval of nucleotide sequences from different nucleotide databases and their analysis. Retrieval of protein sequences from different protein databases and their analysis. Retrieval of small chemical compounds from PubChem compound databases and their analysis. Briefing about retrieval of scientific articles from PubMed database. 	8	CO4						
Referen	nce Books:									
1. D	D. W. Mount: Bioinform	atics-sequence and genome analysis, Cold Spring Harbor Lab Press								
2. Ji	in Xiong: Essential Bioi	nformatics, Cambridge University Press.								
e-Lea	rning Source:									
1. <u>h</u>	1. https://vlab.amrita.edu/index.php?sub=3&brch=273∼=1437&cnt=1									
2. h	https://vlab.amrita.edu/in	dex.php?sub=3&brch=273∼=1442&cnt=1								

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
СО	FOI	F02	103	F04	105	100	10/	108	109	1010	POIT	F012	1301	F302	1303
CO1	2	2	2	2	3	1	1	1	1	1	1	3	2	1	2
CO2	2	2	1	2	2	1	1	1	1	2	1	3	1	2	2
CO3	1	3	2	2	2	1	1	1	1	2	1	3	2	1	2
CO4	1	2	2	2	3	1	2	1	1	2	1	3	2	2	2

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session	: 2022-23									
Course Code	ME222	Title of the Course	HEAT TRANSFER OPERATIONS	L	Т	Р	С			
Year	II	Semester	IV	2	1	0	3			
Pre-Requisite	NONE	NONE Co-requisite NONE								
Course Objectives	to convective bound 2. Explain the conce 3. To develop under 4. Develop concept	laries. Analyze 1D stead ept of free convection m rstanding about heat tran of intensity of radiation	roblems without heat generation in composite walls and external ly conduction problems. echanics, dimensionless number and introduction to the emposer hasfer by phase change: boiling process, film wise and dropw , radiative heat exchange between two black bodies. rates, and heat exchange during parallel, counter and cross fl	pirical ise coi	correla ndensat	tion. ion				

	Course Outcomes								
CO1	Formulate and predict heat conduction problems without heat generation in composite walls and extended surfaces subjected to convective								
	boundaries. Analyze 1D steady conduction problems.								
CO2	Explain the concept of free convection mechanics, dimensionless number and introduction to the empirical correlation.								
CO3	Widening the concepts of convection and solving problems related to its applications								
CO4	Strengthening the basics of radiation and understanding the related laws.								
CO5	Fundamentals of heat exchangers and its analysis using LMTD methods								

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction to Heat Transfer. Conduction. Steady State One- Dimensional Heat Conduction.	Introduction to heat transfer and general concepts of heat transfer by conduction, convection and radiation. Conduction: Basic concepts of conduction in solids, liquids and gases, steady state temperature fields. Thermal resistance concept; Analogy between heat and electricity flow; Thermal contact resistance. Introduction to general heat conduction equation, one dimensional conduction without heat generation e.g., through plane walls, Cylindrical, Spherical surface and Composite layers etc.	7	CO1
2	Critical Thickness and Fins. Convection Heat Transfer	Insulation materials, critical and optimum insulation thickness. Extended surface: fines and their practical applications. Introduction to unsteady state heat transfer. Fundamentals of convection, Natural and forced convection, Introduction to hydrodynamics and thermal boundary layers.	6	CO2
3	Dimensional analysis Heat transfer with phase change.	Buckingham's π theorem, important dimensional numbers and their significance Dimensional analysis of force and free convection. Condensation of pure and mixed vapors, film wise and drop wise condensation, heat transfer in boiling liquids	6	CO3
4	Heat Transfer equipment	Classification, principles and design criteria, types of exchangers viz. double pipe, shell and tube, plate type, Fouling factors; Overall heat transfer coefficient. Logarithmic mean temperature difference (LMTD) method. Introduction of Effectiveness- NTU method Furnaces and their classification and applications.	6	CO4
5	Radiation & Evaporation	Basic radiation concepts, Basic laws of heat transfer by radiation, black body and gray body concepts, view factors, Kirchhoff's law, Black-body radiation exchange, solar radiations, Combined Heat Transfer Coefficient by convection and radiation, Elementary principles, types of evaporators, Single and multiple effect evaporators.	7	CO5
Referen	ce Books:			
1. Heat T	Fransfer: J.P. Holman,	McGraw Hill, 2. Bedger W.L. and Bancharo J. T. "Introduction to Chemical Engineering" Tata M	IcGraw public	ation House.
2. Bedge	er W.L. and Bancharo	J. T. "Introduction to Chemical Engineering" Tata McGraw publication House.		
3. Mc Ad	dams W.H. "Heat Tran	smission" McGraw Hill Books Co.		
e-Lear	ming Source:			

https://www.youtube.com/watch?v=qa-POOjS3zA&list=PL5F4F46C1983C6785

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	2	2	3	2					3	3	2	2
CO2	3	2	2	2	2	3						3	3	3	2
CO3	3	3	3	2	2	3						3	3	2	3
CO4	3	3	3	2	2	3	1					3	3	2	2
CO5	3	3	2	2	3	3						3	3	2	2

	1
Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2020	Effective from Session: 2020-2021										
Course Code	BE213	Title of the Course	Plant Biochemistry	L	Т	Р	С				
Year	II	Semester	IV	2	1	0	3				
Pre-Requisite	None	Co-requisite	None								
Course Objectives	The main objective of the course is to make students understand the biochemistry of phytochemicals										
Course Objectives	and plant n	netabolites.									

	Course Outcomes								
CO1	Give a detailed account of C3 and C4 pathway of carbon reduction and its regulation and photorespiration. Discuss								
	pigments of photosynthesis, Hill reaction and photosynthetic electron transport chain.								
CO2	Describe the structure of nitrate reductase and nitrite reductase. How is ammonia incorporated into organic								
	compounds? Discuss regulation of nitrate assimilation.								
CO3	Give an account of the biosynthesis of auxins, cytokinins, gibberllic and abscisic acids								
CO4	Discuss different types of environmental stresses and their impact on plant growth, metabolism and tolerance. What								
	do you understand by anaerobiosis and pathogenesis.								

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Concept of photosynthesis Photosynthetic apparatus, pigments of photosynthesis, role of carotenoids, photosystems I and II, their location; Hill reaction, photosynthetic electron transport and generation of NADPH & ATP, cyclic and non-cyclic photophosphorylations, complexes associated with thylakoid membranes; light harvesting complexes, path of carbon in photosynthesis – C3 and C4 pathway of carbon reduction and its regulation, Photorespiration.		8	CO1
2	Metabolism of Nitrate assimilation- structural features of nitrate reductase and nitrite		8	CO2
3	Plant Hormones	Biosynthesis of growth regulating substances-auxins, cytokinins, gibberllic andabscisic acids.	8	CO3
4	Environmental factors	Environmental stresses, salinity, water stress, heat, chilling, anaerobiosis, pathogenesis, heavy metals, radiations and their impact on plant growth and metabolism, criteria of stress tolerance.	8	CO4
Referen	ce Books:			
1. Plan	t Biochemistry by P	. M. Dey and J. B. Harborne, Harcourt Aria PTE Ltd. Singapore.		
2. Plan	t Physiology by Sali	nbury.		
3. Plan	t Physiology by Dav	in.		
4. Lehi	ninger Biochemistry	Ι.		

e-Learning Source:

https://drive.google.com/file/d/1cVgp-OnY-s0QqJWbYhM91GFCOJv3VeXy/view?usp=sharing

				Course Articulation Matrix: (Mapping of COs with POs and PSOs)														
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3			
CO1	1	1	1	1		3	1		1			1	1	1	1			
CO2	1	1	2	1		3	1		1			1	1	1	1			
CO3	1	1	2	1		3	1		1			1	2	1	2			
CO4	1	1	2	1		3	1		1			1	2	1	2			

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2020)-2021						
Course Code	BE214	Title of the Course	Clinical Biochemistry	L	Т	Р	С
Year	II	Semester	IV	2	1	0	3
Pre-Requisite	None	Co-requisite	None				
Course Objectives	biochemistry diseases and	laboratory. Detailed kno disorders related to kid	edge of biochemistry and pathophysiology associated with test owledge about the homeostasis of water and electrolytes, inbo ney, liver, gastrointestinal tract and pancreas will be given egarding diagnosis and their management will also be focuse	rn erro . In-de	ors of m	etabolis	sms,

		Course Outcomes
CO)1	Students will learn about the concept of water and electrolyte homeostasis, blood pH and acidosis and alkalosis.
CO	02	Students will learn about the concept of inborn errors of metabolism related to disorders of amino acid metabolism, disorders of carbohydrate metabolism, disorders of purine, pyrimidine and porphyrin metabolism and disorders of lipid metabolism-lipid storage diseases, fatty liver.
CO)3	Students will understand the concept of various pathological tests related to kidneys and Protein energy malnutrition-Marasmus and Kwashiorkor.
CO	94	Students will understand the concept of various pathological tests related to Liver function tests, Gastric function tests, Pancreatic and intestinal function tests. Classification of diabetes and Cancer knowledge will be focussed along with Tumour markers (AFP, CEA, hCG only).

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO				
1	Hydrogen ion and Electrolyte Homeostasis	Hydrogen ion homeostasis: Factors regulating blood pH-buffers, respiratory and renal regulation. Acid-base balance- causes, biochemical findings and management of metabolic and respiratory acidosis and alkalosis. Water, sodium and potassium homeostasis: Distribution of water and electrolytes in the ECF and ICF.	8	CO1				
2	Inborn Errors of Metabolism	Disorders of amino acid metabolism- aminoaciduria, phenylketonuria, alkaptonuria, cystinuria, and maple syrup urine disease. Disorders of carbohydrate metabolism-glycogen storage diseases, galactosemia, fructose intolerance Disorders of purine, pyrimidine and porphyrin metabolism-Hyperuricemia and gout, Hypouricemia. Disorders of lipid metabolism- lipid storage diseases, fatty liver.	8	CO2				
3	Kidney and Nutritional Disorders	Nutritional Disordersurine.Pathogenesis, biochemical findings and management of glomerulonephritis, renal failure, nephrotic syndrome Protein energy malnutrition- Marasmus and Kwashiorkor.						
4	Liver and Gastrointestinal Disorders, Diabetes, and Cancer	Liver function tests (excretory, synthetic, detoxification and metabolic).Plasma enzymes in liver disease. Jaundice- neonatal. Gastric function tests. Pathogenesis, biochemical findings and management of peptic ulcer and gastritis. Pancreatic and intestinal function tests. Classification of diabetes. Metabolic abnormalities–glycosuria. Acute and long term complications, Diagnosis and management. Cancer: Differences between benign and malignant tumours. Morphological and biochemical changes in tumourcells. Tumour markers (AFP, CEA, hCG only).	8	CO4				
	ce Books:							
		Harrison's Vol 1 & 2, 14 th edition McGraw Hill, 1998.						
•	s Biochemistry McGraw							
		approach. Montgomery et al. Mosby.1990 5th editon.						
Clinical	Chemistry – Principles,	procedures, correlations – Bishop, Lippincott, 2005, 5th edition.						
Guyton	and Hall. Textbook of M	Iedical Physiology 12 ed 2011.						
e-Lear	rning Source:							
https:/	//drive.google.com/fil	e/d/1cVgp-OnY-s0QqJWbYhM91GFCOJv3VeXy/view?usp=sharing						

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)														
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	1	1		3	1		1			1	1	1	1
CO2	1	1	2	1		3	1		1			1	1	1	1
CO3	1	1	2	1		3	1		1			1	2	1	2
CO4	1	1	2	1		3	1		1			1	2	1	2

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2020-2021													
Course Code BM	M-215	Title of the Course	Applied Thermodynamics of Bioengineers	L	Т	Р	С						
Year II		Semester	IV										
Pre-Requisite Nor	one	Co-requisite	none										
Course Objectives phy che inte	nysics, and nemical ar terpret da	d engineering to and ad biochemical engi ta, to identify, form	ow to apply knowledge of the laws of thermodynalyze and solve physical and chemical problems entities ineering. The course gives the student the opportulate, and solve engineering problems, and to use tools necessary for engineering practice.	encou inity	nterec to ana	l in lyze a							

	Course Outcomes
CO1	The students will learn about the theoretical concepts of thermodynamics and how it applies to energy conversion in
	technological applications.
CO2	The students will understand the concept of reaction mechanism of fluids and their energy calculation with the help of different
	thermodynamic models.
CO3	The students will able to calculate the equilibrium conversion for single and multiple reactions and effect of different parameters
	on equilibrium constant.
CO4	The students will able to calculate the equilibrium conversion for single and multiple reactions and effect of different parameters
	on equilibrium constant.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction of thermodynamic properties	A generalized balance equation and conserved quantities, Volumetric properties of fluids exhibiting non ideal behavior; residual properties; estimation of thermodynamic properties using equations of state; calculations involving actual property exchanges.	8	CO1
2	Thermodynami c properties of fluids	Partial molar properties, concepts of chemical potential and fugacity; ideal and non-ideal solutions; concepts and applications of excess properties of mixtures; activity coefficient; composition models.	8	CO2
3	Chemical Reaction equilibria	Equilibrium criteria for homogeneous chemical reactions; evaluation of equilibrium constant; effect of temperature and pressure on equilibrium constant; calculation of equilibrium conversion and yields for single and multiple reactions.	8	CO3
4	Thermodynami cs of microbial growth kinetics	Thermodynamics of microbial growth stoichiometry thermodynamics of maintenance, Calculation of the Operational Stoichiometry of a growth process at Different growth rates, Including Heat using the Herbert–Pirt Relation for Electron Donor, thermodynamics and stoichiometry of Product Formation.	8	CO4
	ence Books:			
	1. Smith J.M., Van McGraw-Hill, 2003	Ness H.C., and Abbot M.M. "Introduction to Chemical Engineering Thermodyn 3.	namics", 6th Ed	ition. Tata
2. 2	2. Narayanan K.V.	"A Text Book of Chemical Engineering Thermodynamics", PHI, 2003.		
3. Ch	ristiana D. Smolke	e, "The Metabolic Pathway Engineering Handbook Fundamentals", CRC Press T	aylor & Franci	s Group, 2010.
e-Lea	arning Source:			

				С	ourse A	rticulati	ion Mat	rix: (Ma	apping of	COs with	POs and PS	SOs)			
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO															
CO1	3	3	2	3	3			3		2		2	2	2	3
CO2	3	3	2	3	3			2					2	3	3
CO3	2	3	2	3	2			3		3			3	3	3
CO4	2	3	2	3	2			2				1	3	3	2
CO5	3	2	3	3	2			3		2		1	2	2	3

Effective from Session: 2020-2021													
Course Code	CS-203	Title of the Course	Law & Information security	L	Т	Р	С						
Year	Π	Semester	IV	3	1	0	4						
Pre-Requisite	None	one Co-requisite None											
Course Objectives	trademarks an 2. Knowledge occurrence an 3. Knowledge integrity, and	nd domain theft e on the disciplines of te nd severity of informatic e about Information Sys availability)	ual property and cybercrimes (internet security threats), chnology, E-business and law to allow them to minimize the on security incidents. tem and principles of Information Security (as confidentialit chniques used to detect and prevent network intrusions.										

	Course Outcomes								
CO1	Understand key terms and concepts in cyber law, intellectual property and cybercrimes (internet security threats), trademarks and domain								
	theft								
CO2	Keep an appropriate level of awareness, knowledge and skill on the disciplines oftechnology, E-business and law to allow them to								
	minimize the occurrence and severity of information security incidents.								
CO3	Understand about Information System and principles of Information Security (as confidentiality, integrity, and availability)								
CO4	Understand about cryptography and techniques used to detect and prevent networkintrusions.								

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Fundamentals of Cyber Law	Jurisprudence of Cyber Law, Object and Scope of the IT Act 2000, Introduction to Indian Cyber Law, Unicitral Model Law, ISP Guideline. Intellectual property issues and cyber space, Indian perspective, Overview of Intellectual property related legislation in India, Patent, Copy Right, Trademark law, Law related to semiconductor layout &design.	8	CO 1
2	E - Commerce	Security Threats to E - Commerce, Virtual Organization, Business Transactions on Web, EGovernance and EDI, Concepts in Electronics payment systems, E-Cash, Credit/Debit Cards, E- Agreement, Legal recognition of electronic and digital records, E- Commerce Issues of privacy, Wireless Computing- Security challenges in Mobile devices. Digital Signatures - Technical issues, legal issues, Electronic Records, Digital Contracts, and Requirements of Digital Signature System.	7	CO 2
3	Investigation and Ethics	Cyber Crime, Cyber jurisdiction, Cyber crime and evidence act, Treatment of different countries of cyber crime, Ethical issues in data and software privacy, Plagiarism, Pornography, Tampering computer documents, Data privacy and protection, Domain Name System, Software piracy, Issues in ethical hacking. Internet security threats: Hacking, Cracking, Sneaking, Viruses, Trojan horse, Malicious Code & logic bombs.Introduction to biometric security and its challenges, Finger prints.Cyber crime forensic: CASE STUDY in Cyber Crime	9	CO 3
4	Information security	Information Systems and its Importance, Role of Security in Internet and Web Services, Principles of Information Security, Classification of Threats and attacks, Security Challenges, Security Implication for organizations, Security services - Authentication, Confidentiality, Integrity, Availability and other terms in Information Security, Information Classification and their Roles. Introduction to Cryptography, Issues in Documents Security, Keys: Public Key, Private Key, Firewalls, Basic Concepts of Network Security, Perimeters of Network protection & Network attack, Need of Intrusion Monitoring and Detection.	9	CO 4
Referen	ce Books:			
	•	and IT Protection", PHI Publication, New Delhi		
		ation Security", Pearson Education		
· ·		q Ahmad-Pioneer books.		
		'Information Security and Cyber law", Umesh Publication, Delhi		
e-Lear	rning Source:			

https://nptel.ac.in/courses/106106129

Г

PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO	101	102	105	101	100	100	107	100	107	1010	1011	1012	1501	1502	1505
CO1	1	2	2	3	1	2	1	3	1	2	1	2	1	2	2
CO2	3	2	1	1	1	2	3	2	2	2	3	1	3	2	2
CO3	2	2	2	2	1	1	3	2	3	1	1	2	2	1	2
CO4	3	2	1	2	3	1	1	3	2	2	3	3	2	3	1
		1 L	ow Corr	alation. ') Modor	oto Cor	rolation	3 Subet	ontial C	orrolation					

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2020-21										
Course Code	BE211	Title of the Course	Immunology Lab	L	Т	Р	С			
Year	2 nd	Semester	4 th	0	0	4	2			
Pre-Requisite		Co-requisite								
Course Objectives	To acquaint the student with the various techniques used in immunology-based research specifically isolation, purification									
Course Objectives	and identifica	tion of Antibodies.								

	Course Outcomes
CO1	The student will be able to learn isolation, purification and identification of Antibodies.
CO2	The students will be able to learn about various for identification of Antigen-Antibody samples and Immunoelectrophoresis techniques.
CO3	The student will acquire skills related to ELISA (Enzyme Linked Immunosorbent Assay) and Dot- ELISA
CO4	The student will be able to learn about principles involved in checking protein expression by Western blot technique
CO5	The students will be able to understand the basis of ABO blood group typing and significance of RBC and WBC count by
	Heamocytometer.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Double diffusion techniques	Double diffusion techniques for identification of Antigen-Antibody samples.	3	C01
2	Immuno-electrophoresis techniques.	Immuno-electrophoresis techniques.	6	CO2
3	ELISA	ELISA (Enzyme Linked Immunosorbent Assay)	6	CO3
4	Dot-ELIS-	Immunoblotting Using ELISA-dot	3	CO3
5	Western blot analysis	Western blot technique (Demonstration)	3	CO4
6	Blood groups	ABO blood group typing	6	CO5
7	Cell counting	RBC and WBC count by Heamocytometer	6	CO5
Referen	ce Books:			
Immuno	logy by David Male (Editor); '	Victoria Male (Editor); Ray Stokes Peebles (Editor)		
Review	of Medical Microbiology and I	mmunology, Sixteenth Edition by Warren E.		
Oxford I	Handbook of Clinical Immunol	logy and Allergy by Gavin Spickett.		
Cellular	and Molecular Immunology by	y Abul K.		
	rning Source:			
https:/	//www.avit.ac.in/lab/immuno	logy_bioprocess_engineering_lab/download/17BTCC89/lab_manual.pdf		

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2	1	2	1	1	2	1	2	1	1	3	3	3	3
CO2	1	2	1	2	1	1	2	1	2	1	1	3	3	3	3
CO3	1	2	1	2	1	1	2	1	2	1	1	3	3	3	3
CO4	1	2	1	2	1	1	1	2	2	1	1	2	3	3	3
CO5	1	2	1	2	1	1	1	2	2	3	1	2	3	3	3

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2020-2021										
Course Code	BE212	Title of the Course	Molecular Biology Lab	L	Т	Р	С			
Year	II	Semester	IV	0	0	4	2			
Pre-Requisite	Molecular Biology	Co-requisite								
Course Objectives	-	the student with the vand identification of DN	arious techniques used in molecular biology-based resear A and RNA.	ch spe	cificall	y isolati	ion,			

	Course Outcomes							
CO1	The student will be able to learn isolation, purification and identification of DNA.							
CO2	The students will be able to learn about various for identification of DNA							
CO3	The student will acquire skills related estimation of RNA							
CO4	The student will be able to learn about principles involved in identifying Tm of DNA and RNA							
CO5	The students will be able to understand the basis Electrophoresis							

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO						
1	DNA Estimation	Estimation of DNA by DPA method	3	CO1						
2	RNA Estimation	Estimation of RNA by Orcinol method	6	CO2						
3	Tm Determination	Determination of Tm of DNA and RNA	6	CO3						
4	DNA Isolation	Isolation of Plasmid DNA	3	CO3						
5	Genomic DNA	Isolation of Bacterial genomic DNA	3	CO4						
6	Plant DNA Isolation	Isolation of Plant DNA	6	CO5						
7	Electrophoresis	Visualization of DNA by Agarose Gel Electrophoresis	6	CO5						
Referen	ce Books:									
Immuno	logy by David Male (Editor);	Victoria Male (Editor); Ray Stokes Peebles (Editor)								
Oxford l	Handbook of Clinical Immuno	logy and Allergy by Gavin Spickett.								
Cellular	Cellular and Molecular Immunology by Abul K.									
Molecul	ar Biology by Sambrook									
e-Learning Source:										
https:/	https://www.youtube.com/watch?v=pgP6wvsi0rY									

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2	1	2	1	1	2	1	2	1	1	3	3	3	3
CO2	1	2	1	2	1	1	2	1	2	1	1	3	3	3	3
CO3	1	2	1	2	1	1	2	1	2	1	1	3	3	3	3
CO4	1	2	1	2	1	1	1	2	2	1	1	2	3	3	3
CO5	1	2	1	2	1	1	1	2	2	3	1	2	3	3	3

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2022-23										
Course Code	ME224	Title of the Course	HEAT TRANSFER OPERATIONS	L	Т	Р	С			
Year	Π	Semester	IV	2	1	0	3			
Pre-Requisite	NONE	Co-requisite	NONE							
Course Objectives	boundaries. Analyze 12. Explain the concept3. To develop understa4. Develop concept of	D steady conduction probl of free convection mechar anding about heat transfer l intensity of radiation, radia	ns without heat generation in composite walls and extended surface ems. hics, dimensionless number and introduction to the empirical correla by phase change: boiling process, film wise and dropwise condensat ative heat exchange between two black bodies. and heat exchange during parallel, counter and cross flow in heat ex-	ation. tion		convectiv	e			

Course Outcomes

	course outcomes
1	Formulate and predict heat conduction problems without heat generation in composite walls and extended surfaces subjected to convective boundaries. Analyze
	1D steady conduction problems.
2	Explain the concept of free convection mechanics, dimensionless number and introduction to the empirical correlation.
3	Widening the concepts of convection and solving problems related to its applications
4	Strengthening the basics of radiation and understanding the related laws.
5	Fundamentals of heat exchangers and its analysis using LMTD methods
,	2 3 4

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO						
1	Introduction to Heat Transfer. Conduction. Steady State One- Dimensional Heat Conduction.	Introduction to heat transfer and general concepts of heat transfer by conduction, convection and radiation. Conduction: Basic concepts of conduction in solids, liquids and gases, steady state temperature fields. Thermal resistance concept; Analogy between heat and electricity flow; Thermal contact resistance. Introduction to general heat conduction equation, one dimensional conduction without heat generation e.g., through plane walls, Cylindrical, Spherical surface and Composite layers etc.	7	COI						
2	Critical Thickness and Fins. Convection Heat Transfer	Insulation materials, critical and optimum insulation thickness. Extended surface: fines and their practical applications. Introduction to unsteady state heat transfer. Fundamentals of convection, Natural and forced convection, Introduction to hydrodynamics and thermal boundary layers.	6	CO2						
3	Dimensional analysis Heat transfer with phase change.	sional analysis transfer with Buckingham's π theorem, important dimensional numbers and their significance Dimensional analysis of force and free convection. Condensation of pure and mixed vapors film wise and drop wise condensation heat transfer in boiling								
4	Heat Transfer equipment	51., 5								
5	Radiation & Evaporation	Basic radiation concepts, Basic laws of heat transfer by radiation, black body and gray body concepts, view factors, Kirchhoff's law, Black-body radiation exchange, solar radiations, Combined Heat Transfer Coefficient by convection and radiation, Elementary principles, types of evaporators, Single and multiple effect evaporators.	7	CO5						
Referenc	e Books:									
	ransfer: J.P. Holman, Mc									
•		"Introduction to Chemical Engineering" Tata McGraw publication House.								
3. Mc Ad	lams W.H. "Heat Transmi	ission" McGraw Hill Books Co.								
4. Kern D	D.Q. " Process Heat Trans	fer" McGraw Hill Books Co.								
5. Heat T	ransfer; R. Yadav, Centra	ll Publishing House, Allahabad.								
e-Lear	ning Source:									
https://	/www.youtube.com/watc	<u>:h?v=qa-PQOjS3zA&list=PL5F4F46C1983C6785</u>								
https://	/www.youtube.com/watc	<u>ch?v=sKnE5qvz0fc&list=PLbRMhDVUMngeygd_uWiLqa3fzA2h7vdRx</u>								
https://	www.youtube.com/watc	:h?v=IedD23t5jI4&list=PLpCr5N2IS7Nmu22MOgDWOr0sSIIpUNUz3								

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
3	3	3	2	2	3	2					3	3	2	2
3	2	2	2	2	3						3	3	3	2
3	3	3	2	2	3						3	3	2	3
3	3	3	2	2	3	1					3	3	2	2
3	3	2	2	3	3						3	3	2	2
	3 3 3 3 3	3 3 3 2 3 3 3 3 3 3	3 3 3 3 2 2 3 3 3 3 3 3 3 3 3	3 3 3 2 3 2 2 2 3 2 2 2 3 3 3 2 3 3 3 2 3 3 3 2	3 3 3 2 2 3 2 2 2 2 3 2 2 2 2 3 3 3 2 2 3 3 3 2 2 3 3 3 2 2	PO1 PO2 PO3 PO4 PO5 PO6 3 3 3 2 2 3 3 2 2 2 3 3 2 2 2 3 3 3 3 2 2 3 3 3 3 2 2 3 3 3 3 2 2 3 3 3 3 2 2 3	PO1 PO2 PO3 PO4 PO5 PO6 PO7 3 3 3 2 2 3 2 3 2 2 2 3 2 3 2 2 2 3 2 3 3 3 2 2 3 1 3 3 3 2 2 3 1 3 3 3 2 2 3 1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 3 3 3 2 2 3 2 2 3 2 2 2 3 2 2 3 2 2 2 3 2 2 3 3 3 2 2 3 1 3 3 3 2 2 3 1 3 3 3 2 3 3 1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 3 3 3 2 2 3 2	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 3 3 3 2 2 3 2 PO10 PO10	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 3 3 3 2 2 3 2 PO10 PO11 3 3 3 2 2 3 2 PO11 PO11 </th <th>PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 3 3 3 2 2 3 2 3 3 3 2 2 2 3 2 3 3 2 2 2 3 3 3 3 3 2 2 3 3 3 3 3 2 2 3 3 3 3 3 2 2 3 1 3 3 3 2 2 3 1 3 3</th> <th>PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 3 3 3 2 2 3 2 3</th> <th>PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 3 3 3 2 2 3 2 3 3 3 2 2 3 2 3 3 3 2 2 3 2 3 3 3 2 2 3 3</th>	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 3 3 3 2 2 3 2 3 3 3 2 2 2 3 2 3 3 2 2 2 3 3 3 3 3 2 2 3 3 3 3 3 2 2 3 3 3 3 3 2 2 3 1 3 3 3 2 2 3 1 3 3	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 3 3 3 2 2 3 2 3	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 3 3 3 2 2 3 2 3 3 3 2 2 3 2 3 3 3 2 2 3 2 3 3 3 2 2 3 3